

EXAMEN DE LA UNIDAD 2: ÁTOMOS Y ENLACES

- 1. [1 punto] Describe el enlace metálico.
- **2.** [1,5 puntos] Propiedades de las sustancias iónicas.
- **3. [1,5 puntos]** Nombra y describe los tres números cuánticos que se asocian a un orbital.
- **4. [2 puntos]** Identifica cuáles de las siguientes combinaciones de números cuánticos son posibles y a qué orbital nos referimos. Si no son válidos justifica la respuesta:
 - **a)** (2, 1, 2)
 - **b)** b) (4, 3, -2)
 - **c)** c) (3, 2, -2)
 - **d)** d) (2, 2, 1)
 - **e)** e) (1, 1, 0)
- 5. Completa la tabla [2 puntos]

Z	CONFIGURACIÓN ELECTRÓNICA	CAPA DE VALENCIA	ELECTRONES DE VALENCIA	PERIODO	NOMBRE DE LA FAMILIA
38					
46					
7					
18					

- **6.** Para las siguientes parejas, determina:
 - a) [0,4 puntos] Tipo de enlace: iónico, covalente o metálico.
 - **b)** [0,4 puntos] La valencia con que actúa cada elemento.
 - c) [1,2 puntos] La estructura de Lewis resultante.

₁H y ₁₆S

₁₂Mg y ₉F

₇N y ₇N

19K y 16S

EXAMEN DE LA UNIDAD 3: REACTIVIDAD QUÍMICA

- 1. [1 punto] Hipótesis de Avogadro.
- 2. [1 punto] Describe que ocurre en una reacción endotérmica.
- **3. [1,5 puntos]** Indica qué factores influyen en una reacción quimica según la teoría de colisiones y según la teoría del estado de transición
- **4.** [1,5 puntos] Ajusta las siguientes reacciones químicas:
 - a) $NO_2 + H_2O \rightarrow HNO_3 + NO$
 - b) $C_2H_2 + O_2 \rightarrow CO_2 + H_2O$
- **5. [2 puntos**] Calcula la masa de PCl₃ que se obtiene si reaccionan 426 g de Cl₂ según la reacción:

$$6Cl_2 + P_4 \rightarrow 4 PCl_3$$

DATOS:
$$A(Cl) = 35,5$$
umas $A(P) = 31$ umas

6. [2 puntos] Calcula el volumen de hidrógeno (H₂), medido a 25 °C y 0,98 atm, que se desprende al hacer reaccionar 41,4 g de Na con agua:

2 Na (s) + H₂O
$$\rightarrow$$
 2 NaOH (aq) + H₂ (g)

DATOS: A(Na) = 23 umas

A(0) = 16 umas

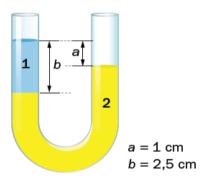
A(H) = 1 uma

7. [1 punto] Define "ácido" y "base" según la teoría de Arrhenius. Calcular el pH y el pOH de una disolución de H₂SO₄ 0,35 M en 0,5 litros de disolución.

EXAMEN DE LA UNIDAD 5: DINÁMICA

- 1. (2 puntos) Enuncia las tres leyes de la dinámica enunciadas por Isaac Newton.
- **2. (1 punto)** Tenemos un muelle de 8 cm. Cuando ejercemos sobre uno de sus extremos una fuerza de 80 N, el muelle alcanza una longitud de 20 cm. Responde:
 - a) ¿Cuál es la constante k del muelle?
 - b) ¿Cuál será la longitud del muelle si aplicamos una fuerza de 50 N?
- **3. (2 puntos)** Sobre un cuerpo actúan tres fuerzas según el siguiente esquema. Calcula la fuerza resultante (vector y módulo)

- **4. (2 puntos)** Por un plano inclinado 30° sobre la horizontal desciende un cuerpo de 10 kg de masa con una aceleración de 4 m \cdot s⁻². ¿Cuál es el coeficiente de rozamiento entre el objeto y el suelo?
- **5. (2 puntos)**¿Cuál debe ser la velocidad y el periodo orbital de un satélite situado a 300 km de distancia del centro de La Tierra?


 DATOS: $M_T = 5.98 \cdot 10^{24} \text{ kg}$ $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
- **6. (1 punto)** Di qué es un satélite geoestacionario y deduce a qué distancia se deben encontrar del centro de la Tierra.

<u>DATOS</u>: $M_T = 5.98 \cdot 10^{24} \text{ kg}$ $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

EXAMEN DE LA UNIDAD 6: PRESIÓN EN LOS FLUIDOS

- **1. (2 puntos)** Enuncia el principio de los vasos comunicantes y explica alguna de sus aplicaciones.
- 2. (2 puntos) Enuncia el principio de Pascal y explica alguna de sus aplicaciones.
- **3. (2 puntos)** Una persona de 75 kg lleva unas botas de 200 cm² de superficie de apoyo cada una. Determina la presión que ejercerá sobre la nieve cuando esté de pie. ¿Y cuando lo haga con sus esquís, de superficie 1800 cm² cada uno?
- **4. (1 puntos)** La superficie del émbolo pequeño de una prensa hidráulica es de 2 cm². Si al aplicar una fuerza de 2 N se transforman en 90 N, ¿qué radio tiene el otro émbolo?
- **5. (1,5 puntos)** Determina el peso aparente de una roca de 2,7 g/cm 3 y 2 kg de masa sumergida en agua. Dato: $d_{agua} = 1 g/cm^3$
- **6. (1,5 punto)** En el tubo en forma de U de la imagen hay dos líquidos inmiscibles en equilibrio. Si el líquido 1 tiene una densidad de 1,05 g/cm³, determina la densidad del líquido 2.

